This course was created with the
course builder. Create your online course today.
Start now
Create your course
with
Autoplay
Autocomplete
Previous Lesson
Complete and Continue
Python and Machine Learning Training Course
Module-1: Introduction to Machine Learning
Introduction to Machine Learning (9:53)
Steps of Machine learning (15:15)
Supervised, Unsupervised Learning & Reinforcement Learning in Machine Learning (10:39)
Supervised vs unsupervised learning (4:03)
Workflow & Types of Supervised Learning (12:27)
Types of Regression Algorithms (10:19)
Types of Classification Algorithms (10:51)
Workflow of Unsupervised Learning (7:00)
Categories of unsupervised learning (10:28)
How Reinforcement Learning Works (7:38)
Types of Reinforcement Learning (6:31)
Markov Decision Process (4:33)
Module-2: Introduction to Python Programming
Introduction to Python Programming (6:56)
Installation of Python on Windows, Linux, Mac, Docker, etc (7:10)
How to access & work with Python online (repilit, https://www.online-python.com, google collab) (4:06)
Understanding Python environment (Pip, Conda, Venv) (20:14)
Setting up Python development environment (15:21)
Git & Github (11:53)
Your first Python program (10:29)
Module-3: Basics of Python
Python Identifiers, Keywords (6:33)
Python Variables (9:30)
Python Data Types (18:30)
Python naming conventions and coding standards (18:04)
Document Interlude in Python (9:55)
Understanding of operators in Python (22:52)
Python functions (User-defined and built-in functions in Python) (17:52)
Working with Conditional Statements in Python (16:02)
Working with Looping Statements in Python (18:38)
Working with Jump Statements (9:08)
Working with Python String (26:31)
Working with Python List (27:01)
Working with Tuple in Python (20:43)
String vs List vs Tuple (10:22)
Python Dictionaries (26:45)
Python Sets (26:21)
Dictionary vs Sets (11:36)
Python Regular Expression (19:59)
Modules in Python (12:07)
Packages in Python (10:27)
Module-4: Exception handling in Python
Python Errors (6:19)
Understanding Various Python Exceptions (8:37)
Exception Handling in Python (16:55)
Module-5: Working with Files in Python
Working with files in Python (28:50)
Working with Binary Files (12:44)
Working with Docx In Python (15:32)
Working with PDF in Python (29:07)
Working with CSV files in Python (17:15)
Convert one file to another in Python (10:35)
Convert PDF to Docx in Python (11:24)
Module-6: Object Oriented Programming in Python
Overview of OOPs (12:56)
Private, Public, and self-variables (9:56)
Functions or Methods (6:32)
Constructor & Destructor (6:26)
Abstraction & Encapsulation (10:54)
Inheritance and multiple inheritance (5:44)
Polymorphism (8:09)
Module-7: Python Multithreaded Programming
What is multithreading? (11:19)
Multiprocessing vs Multi-Threading (2:48)
Thread Synchronization (9:57)
Daemon Threads (4:58)
Deadlock of Threads & Avoiding Deadlocks (7:18)
Module-8: Using Databases in Python
Working with MySQL in Python (8:35)
Working with SQLite3 in Python (5:39)
Working with PostgreSQL in Python (8:09)
CREATE, INSERT, READ, Delete Operation in Python (11:04)
DDL Operation with Database in Python (8:52)
Module-9: Introduction to Tkinter Library
Introduction to Tkinter in Python (3:55)
Installation of Tkinter (2:14)
Termonologies of Tkinter (2:08)
First GUI Program using Python Tkinter (8:02)
Module-10: Geometry Manager in Tkinter
Introduction to Geometry Manager in Python Tkinter (7:24)
Working with pack geometry manager (18:50)
Grid geometry manager (10:06)
Place geometry manager (14:48)
Pack vs grid vs place (7:12)
Module-11: Widgets in Tkinter
Display Widget in Python Tkinter (14:34)
Entry Widget in Python Tkinter (18:25)
Text Input Widget in Tkinter (22:10)
Scrollbar Input Widget in Python Tkinter (7:27)
Scale Input Widget in Python Tkinter (7:16)
Spinbox Input widget (4:52)
Canvas Input Widget (15:59)
Container Widgets in Python Tkinter (19:04)
Action buttons - button, radiobutton in Python Tkinter (18:11)
Action button - checkbutton, menubutton in Python Tkinter (13:05)
Filedialog Widgets in Python Tkinter (19:17)
Messagebox Widgets in Python Tkinter (5:05)
Combobox Widget in Python Tkinter (7:34)
ColorChooser in Python Tkinter (6:06)
Treeview Widget in Python Tkinter (8:37)
Progressbar Widget in Python Tkinter (9:26)
Notebook widget in Tkinter (13:15)
Seperator in Tkinter (4:50)
Sizegrip Widget in Tkinter (3:33)
Images in Tkinter (9:26)
Working with Python-Docx with Python Tkinter (20:53)
Working with PyPDF2 with Python TKinter (39:33)
Module-12: Tkinter with Object Oriented Programming
Tkinter Application Using Object Oriented Programing (8:02)
Notepad application Using Python Tkinter (22:27)
Module-13: Packaging and Distributing Executables
Overview of Pyinstaller (2:22)
Convert PY to exe using console (4:13)
Convert PY to exe using without console (2:57)
Pack the exe to distributable file (4:01)
Module-14: Introduction to Python Turtle
Introduction to Turtle (3:27)
Getting started with turtle (5:11)
Programming with turtle (3:31)
Change Turtle Size & Shape (5:21)
Drawing Shapes and Preset Figures (6:09)
Working with Pen in Turtle (7:33)
Turtle Fill color and clear screen (7:25)
Resetting the Environment, leaving a Stamp, and Cloning Our Turtle (5:39)
Module-15: Using loops and conditional statement in Turtle
Working with Turtle using Loops (5:40)
Conditional Statements in Python Turtle (5:05)
Game Project from Scratch (7:40)
Module-16: Django introduction and installation
Introduction to web framework, Django and Features (10:10)
Installation of Django using PIP (9:43)
Installation of Django using Conda (5:13)
Creating a Project & Application in Django (12:05)
Setting up Database in Django (12:28)
Various useful Django Commands (10:33)
Module-17: Dynamic Web Pages in Django
View in Django (12:26)
URL Configuration & Loose Coupling in Django (5:36)
404 Error in Django (9:10)
Dynamic URLs in Django (9:32)
Django Pretty Error Pages (6:10)
Module-18: Template System in Django
Introduction to Django Template System (6:54)
Multiple contexts, Template tags & Filters (21:31)
render(), render_to_response(), & locals (8:00)
The include Template Tag (6:00)
Template Inheritance (9:15)
How to write your own Context Processors (6:55)
Writing Custom Template Filters and Tags (10:44)
Module-19: Models in Django
Understanding models in Django (11:46)
Adding model string representations (9:06)
Insert, update, select, delete and filter data objects (13:07)
Ordering, slicing, chaining lookups data objects (11:19)
Add, update & remove fields (7:36)
Module-20: Django Administration
When and Why use Admin Interface in Django (15:58)
Working with users, groups, and permissions in Django (25:30)
How to customize the admin interface in Django (19:31)
Customizing the admin index page (22:47)
Module-21: Forms in Django
Creating a feedback form in Django (14:11)
Processing the submission of forms (13:17)
Customizing forms in Django (14:54)
Validation rules for forms in Django (26:49)
Creating forms from models in Django (18:28)
Module-22: Generic, Advanced Views and URL configurations in Django
Introduction to generic views and its objects (11:26)
Extending generic views (26:38)
Template contexts (14:29)
Viewing subsets of objects (11:32)
Complex filtering (11:45)
URL configuration tips in Django (5:39)
Working with Named Groups (16:58)
Using Default View Arguments (9:31)
Capturing Text in URLs in Django (6:04)
Including Other URL configurations (17:56)
How Captured Parameters Work with include() (5:19)
Module-23: Users and Registration
Understanding how cookies works in Django (2:53)
Setting up cookies (9:38)
Users and authentication (3:44)
Enabling authentication support (6:28)
Logged-in users access control (10:20)
Managing users and messages (23:28)
Creating profile and password (26:32)
Managing profile (31:21)
Module-25: Introduction to Pandas
Pandas Introduction (2:14)
Installation of Pandas using package manager (12:12)
Installation of pandas (9:47)
Dataset for data Analysis (2:14)
Module-26: Basics of Pandas
Series & DataFrame in Pandas (9:39)
Import and Export CSVs, Excel and URLs in Pandas (8:32)
Head & Tail in Pandas (2:16)
Module-27: Operation in Pandas
Selecting, Viewing and Describing data in Pandas (15:11)
Slicing dataframe using loc and iloc (5:36)
Create & delete Operations in Pandas (7:29)
Merge & concat operations in pandas (8:03)
Handling Missing Values in Pandas (11:20)
Data manipulation using group by and crosstab (11:05)
Working with date and time (4:18)
Operations and visualization of dataframe (9:49)
Module-28: Project on Data Analysis using Python
Google Play Store Apps (23:55)
Module-29: Introduction to Python NumPy
Python NumPy introduction (3:49)
Install and setup NumPy (6:36)
Different ways to create arrays in NumPy (10:26)
NumPy data types and attributes (10:00)
Working with NumPy arrays (5:42)
String arrays in NumPy (16:43)
Basic slicing Nd arrays (5:12)
Copy, Arange and random in NumPy (14:15)
Numpy arithmetic operations (10:52)
Logical and comparison operators in NumPy (13:10)
Mathematical Functions in NumPy (10:54)
Module-30: Advanced Operations in NumPy
Working with Linear algebra module (11:27)
NumPy Array Manipulation (15:49)
NumPy Statistcal Functions (14:39)
NumPy Counting Functions (8:11)
Working of Universal Functions (13:04)
Numpy Matrix Library (9:30)
NumPy Histogram Using Matplotlib (8:52)
Scaler Objects in NumPy (5:20)
Basic and advanced indexing on NumPy Arrays (7:02)
Character Arrays in Python NumPy (6:42)
Sorting Arrays Using NumPy (6:34)
Record Arrays in NumPy (8:30)
Masked Arrays in NumPy Python (6:34)
Working with File IO with Python NumPy (12:18)
Module-31: Overview of Matplotlib
Introduction to Matplotlib (4:17)
Installation of Matplotlib (Pip Package) (8:39)
Installation of Matplotlib (Conda Package) (7:13)
How to start with Matplotlib (19:22)
Add title, labels, legend, grids, handling axes (15:00)
Save Plot in default formats (12:08)
Working with backend (15:46)
Working with color properties (7:41)
Working with line properties (10:14)
Handling ticks in Matplotlib (8:15)
Module-32: Working with different type of plots in Matplotlib
Multiple Lines Chart using Matplotlib (4:48)
Basic Bar Chart (16:59)
Stacked Bar Chart (12:05)
Grouped Bar Chart (11:18)
Histogram (26:38)
Scatter Plot (11:15)
Pie Chart in Matplotlib (18:46)
Donut Chart in Matplotlib (8:00)
Error Bars (13:38)
Polar Chart (6:37)
Radial and Angular Grid (5:38)
Quiver Plot (8:57)
Contour plot (7:50)
Date plot (9:17)
Text in figure in matplotlib (7:29)
Text function and fonts (9:12)
LaTeX Formatting (16:45)
Annotations and Arrows (12:31)
Subplots (26:02)
Multiple Figures (5:59)
Twin Axes in Matplotlib (10:05)
Logarithmic Axes in Matplotlib (15:55)
Share Axis in Matplotlib (6:52)
Module-33: Statistical and Three-Dimensional Charts
Autocorrelation in Matplotlib (5:42)
Box Plot in Matplotlib (8:44)
Violin Plot in Python Matplotlib (5:33)
Heatmap in Python Matplotlib (6:43)
Image Plotting in Matplotlib (11:01)
Colorbar in Matplotlib (7:30)
Basic 3D Plots in Matplotlib (12:37)
Advance 3D Plots in Matplotlib (11:47)
Module-34: Plotting Data From DataSource
Plotting Data from Pandas dataframe (12:28)
Plotting Data from CSV (14:40)
Plotting Data from Database MySQL (16:03)
Plotting Data from Database MariaDB (12:22)
Plotting Data from Database SQLite (6:52)
Module-35: Embedding Matplotlib in GUI (PyQt5, Tkinter, Django, wxFrame)
Embedding matplotlib figure in PyQt5 (10:41)
Embedding matplotlib figure in Tkinter (8:20)
Embedding matplotlib figure in Django (15:08)
Embedding matplotlib figure in wxFrame (6:04)
Module-36: Working with Seaborn Library
Introduction to Seaborn (4:52)
Installation of Seaborn (Using Pip) (10:20)
Installation of Seaborn (Using Conda) (8:03)
Relational Plot (relplot()) (17:37)
Relational Plot (scatterplot()) (7:53)
Relational Plot (lineplot()) (8:06)
Categorical Plot ( Catplot, Barplot, Countplot, Boxplot) (3:44)
Categorical Plot ( Violinplot, Stripplot, Swarmplot, Factorplot) (20:51)
Distribution Plot (Displot) (15:40)
Distribution Plot (Pairplot, Jointplot) (14:16)
Distribution Plot (Rugplot) (7:30)
Regression Plot (23:54)
Matrix Plot (18:28)
Multi-plot grids (18:28)
Module-37: Introduction to scikit learn
Introduction to Scikit Learn (3:20)
Scikit learn installation (Windows, MacOS, Linux) (4:48)
How to implement Scikit learn workflow (4:09)
Modeling data in Scikit learn (6:27)
Convert data into numbers (6:16)
Handle missing value using Simple Imputer (6:19)
Fitting and Predicting the model in scikit learn (6:01)
Evaluation of Model in Scikit Learn (14:54)
Improvement of Model in Scikit Learn (5:41)
Module-38: Scikit learn supervised methods
Naive Bayes: Bernoulli - Multinomial (10:08)
Logistic regression (3:52)
Linear regression (6:48)
Support Vector Machines (SVM) (3:24)
Decision trees (5:31)
Ensemble Method in Scikit learn (9:30)
Module-39: Scikit learn unsupervised methods
Density Estimation (5:14)
Principal Component Analysis (3:28)
K-Means (4:24)
DBSCAN (4:13)
Clustering (5:49)
Outlier Detection (6:46)
Novelty detection (4:16)
Module-40: Overview of PyTorch
Introduction to PyTorch (4:15)
Installation of PyTorch (5:23)
How to start with PyTorch (5:38)
TensorFlow vs PyTorch (4:24)
One Dimensional Tensor (7:26)
Vector Operations in PyTorch (6:06)
Two Dimensional Tensors (5:31)
Slicing Three Dimensional Tensor (5:12)
Matrix Multiplication in PyTorch (10:11)
Gradient with PyTorch (5:09)
Module-41: Linear Regression in PyTorch
Understanding of Linear Regression in PyTorch (4:18)
Making Predictions and Linear class in PyTorch (5:52)
Custom Module in PyTorch (4:07)
Loss Function in PyTorch (6:37)
Gradient Decent in PyTorch (5:36)
Mean Squared Error in PyTorch (5:27)
Module-42: Preceptron in PyTorch
What is Deep Learning in PyTorch (8:44)
Creating dataset (4:09)
Model Setup (5:54)
Model Training (5:18)
Model Testing (6:07)
Module-43: Convolution & Deep Neural Network in PyTorch
Convolutions and MNIST (5:43)
Convolutional Layer (7:29)
Pooling (5:52)
Fully Connected Layer (3:35)
Non-Linear Boundary (3:57)
Feedforward Process in PyTorch (5:36)
Backpropagation in PyTorch (4:42)
Testing Mode in PyTorch (5:27)
Module-44: Image Recognition in PyTorch
MNIST Dataset in PyTorch (3:29)
Image Transforms (4:25)
Neural Network Implementation (5:41)
Neural Network Validation (5:37)
Module-45: CIFAR10 Classification in PyTorch
The CIFAR 10 Dataset (3:34)
Hyperparameter Tuning (8:00)
Data Augmentation (8:06)
Module-46: Overview of TensorFlow
Introduction to TensorFlow (5:16)
Installation of TensorFlow (7:54)
How to start with TensorFlow (6:12)
Various Operations of TensorFlow (17:05)
Slicing and Indexing of Tensor (8:55)
TensorFlow vs NumPy (6:37)
Linear Regression in TensorFlow (8:23)
Module-47: Convolutional and Recurrent Neural Networks
Implementation of Convolutional Neural Network (7:36)
Recurrent Neural Network implementation with TensorFlow (8:37)
CNN AND RNN Difference in TensorFlow (7:18)
A predicted model for time series data by using the RNN in TensorFlow (5:56)
Module-48: Perception in TensorFlow
Artificial Neural Network in TensorFlow (7:17)
Single Layer Perception (8:17)
Multi layer Perception (6:31)
Optimizer in TensorFlow (11:42)
Recommendations for Neural Network Training (8:41)
TensorFlow XOR implementation (5:16)
Module-49: TensorBoard Visualization
TensorBoard Visualization (7:35)
TensorFlow Graph Visualization Using TensorBoard (5:49)
How to visualize models, data, and training with TensorBoard (5:55)
Hyperparameter Tuning with the HParams Dashboard (6:35)
Graph and loss visualization using TensorBoard (4:20)
Python Data Types
Lesson content locked
If you're already enrolled,
you'll need to login
.
Enroll in Course to Unlock