Python and Machine Learning Training Course
Learn Python and Machine Learning from beginner to advanced level (Python Programming, Tkinter, Turtle, Django, Pandas, NumPy, Matplotlib, Scikit Learn, PyTorch, etc.)
Enroll in CourseGet started now!
Python and Machine Learning Training Course
Join the Python and Machine Learning Training Course to become an expert in Python and Machine Learning. A few points about the complete training course:
- Python and Machine Learning from beginner to advanced level
- It Covers Machine learning, Python basics, Tkinter, Turtle, Django, Pandas, NumPy, Matplotlib, Scikit learn, PyTorch, TensorFlow, etc.
- 50 modules
- 60+ Hours of HD Video Course
- Lifetime access
- Weekly doubt clear sessions (Live)
- Course Materials in PDFs, Source Code, etc.
- Special job interview preparation tips
- Exclusive Facebook Group Acces
Your Instructor
Here is a little author bio of each author of the Python and Machine Learning Training Course.
Shivam: Shivam is a Master's graduate currently working with TSInfo Technologies as a Senior Python Developer. He is expertise in multiple domains like Python, Django, and Databases like SQL Server, MySQL, etc.
Vineet: Vineet is working as a Senior Python developer with TSInfo Technologies. He has expert knowledge of Python Tkinter, Python Pandas, and databases like Oracle and SQL Server.
Arvind: Arvind is a Master's graduate working with TSInfo Technologies as a Senior Python Developer. He is proficient in using multiple Python libraries like NumPy, Tensorflow, and more.
Tanya: Tanya is a Postgraduate in computer applications and currently working with TSInfo Technologies as a Senior Python Developer. She is skilled in using various Python libraries like Matplotlib, Pandas, and Django framework.
Vaishali: Vaishali is a Master's graduate presently working with TSInfo Technologies as a Senior Python Developer. She is experienced in diverse Python libraries like Scikit learn, Turtle, and PyTorch.
Course Curriculum
-
StartIntroduction to Machine Learning (9:53)
-
StartSteps of Machine learning (15:15)
-
StartSupervised, Unsupervised Learning & Reinforcement Learning in Machine Learning (10:39)
-
StartSupervised vs unsupervised learning (4:03)
-
StartWorkflow & Types of Supervised Learning (12:27)
-
StartTypes of Regression Algorithms (10:19)
-
StartTypes of Classification Algorithms (10:51)
-
StartWorkflow of Unsupervised Learning (7:00)
-
StartCategories of unsupervised learning (10:28)
-
StartHow Reinforcement Learning Works (7:38)
-
StartTypes of Reinforcement Learning (6:31)
-
StartMarkov Decision Process (4:33)
-
StartIntroduction to Python Programming (6:56)
-
StartInstallation of Python on Windows, Linux, Mac, Docker, etc (7:10)
-
StartHow to access & work with Python online (repilit, https://www.online-python.com, google collab) (4:06)
-
StartUnderstanding Python environment (Pip, Conda, Venv) (20:14)
-
StartSetting up Python development environment (15:21)
-
StartGit & Github (11:53)
-
StartYour first Python program (10:29)
-
StartPython Identifiers, Keywords (6:33)
-
StartPython Variables (9:30)
-
StartPython Data Types (18:30)
-
StartPython naming conventions and coding standards (18:04)
-
StartDocument Interlude in Python (9:55)
-
StartUnderstanding of operators in Python (22:52)
-
StartPython functions (User-defined and built-in functions in Python) (17:52)
-
StartWorking with Conditional Statements in Python (16:02)
-
StartWorking with Looping Statements in Python (18:38)
-
StartWorking with Jump Statements (9:08)
-
StartWorking with Python String (26:31)
-
StartWorking with Python List (27:01)
-
StartWorking with Tuple in Python (20:43)
-
StartString vs List vs Tuple (10:22)
-
StartPython Dictionaries (26:45)
-
StartPython Sets (26:21)
-
StartDictionary vs Sets (11:36)
-
StartPython Regular Expression (19:59)
-
StartModules in Python (12:07)
-
StartPackages in Python (10:27)
-
StartWorking with files in Python (28:50)
-
StartWorking with Binary Files (12:44)
-
StartWorking with Docx In Python (15:32)
-
StartWorking with PDF in Python (29:07)
-
StartWorking with CSV files in Python (17:15)
-
StartConvert one file to another in Python (10:35)
-
StartConvert PDF to Docx in Python (11:24)
-
StartDisplay Widget in Python Tkinter (14:34)
-
StartEntry Widget in Python Tkinter (18:25)
-
StartText Input Widget in Tkinter (22:10)
-
StartScrollbar Input Widget in Python Tkinter (7:27)
-
StartScale Input Widget in Python Tkinter (7:16)
-
StartSpinbox Input widget (4:52)
-
StartCanvas Input Widget (15:59)
-
StartContainer Widgets in Python Tkinter (19:04)
-
StartAction buttons - button, radiobutton in Python Tkinter (18:11)
-
StartAction button - checkbutton, menubutton in Python Tkinter (13:05)
-
StartFiledialog Widgets in Python Tkinter (19:17)
-
StartMessagebox Widgets in Python Tkinter (5:05)
-
StartCombobox Widget in Python Tkinter (7:34)
-
StartColorChooser in Python Tkinter (6:06)
-
StartTreeview Widget in Python Tkinter (8:37)
-
StartProgressbar Widget in Python Tkinter (9:26)
-
StartNotebook widget in Tkinter (13:15)
-
StartSeperator in Tkinter (4:50)
-
StartSizegrip Widget in Tkinter (3:33)
-
StartImages in Tkinter (9:26)
-
StartWorking with Python-Docx with Python Tkinter (20:53)
-
StartWorking with PyPDF2 with Python TKinter (39:33)
-
StartIntroduction to Turtle (3:27)
-
StartGetting started with turtle (5:11)
-
StartProgramming with turtle (3:31)
-
StartChange Turtle Size & Shape (5:21)
-
StartDrawing Shapes and Preset Figures (6:09)
-
StartWorking with Pen in Turtle (7:33)
-
StartTurtle Fill color and clear screen (7:25)
-
StartResetting the Environment, leaving a Stamp, and Cloning Our Turtle (5:39)
-
StartIntroduction to web framework, Django and Features (10:10)
-
StartInstallation of Django using PIP (9:43)
-
StartInstallation of Django using Conda (5:13)
-
StartCreating a Project & Application in Django (12:05)
-
StartSetting up Database in Django (12:28)
-
StartVarious useful Django Commands (10:33)
-
StartIntroduction to Django Template System (6:54)
-
StartMultiple contexts, Template tags & Filters (21:31)
-
Startrender(), render_to_response(), & locals (8:00)
-
StartThe include Template Tag (6:00)
-
StartTemplate Inheritance (9:15)
-
StartHow to write your own Context Processors (6:55)
-
StartWriting Custom Template Filters and Tags (10:44)
-
StartIntroduction to generic views and its objects (11:26)
-
StartExtending generic views (26:38)
-
StartTemplate contexts (14:29)
-
StartViewing subsets of objects (11:32)
-
StartComplex filtering (11:45)
-
StartURL configuration tips in Django (5:39)
-
StartWorking with Named Groups (16:58)
-
StartUsing Default View Arguments (9:31)
-
StartCapturing Text in URLs in Django (6:04)
-
StartIncluding Other URL configurations (17:56)
-
StartHow Captured Parameters Work with include() (5:19)
-
StartUnderstanding how cookies works in Django (2:53)
-
StartSetting up cookies (9:38)
-
StartUsers and authentication (3:44)
-
StartEnabling authentication support (6:28)
-
StartLogged-in users access control (10:20)
-
StartManaging users and messages (23:28)
-
StartCreating profile and password (26:32)
-
StartManaging profile (31:21)
-
StartSelecting, Viewing and Describing data in Pandas (15:11)
-
StartSlicing dataframe using loc and iloc (5:36)
-
StartCreate & delete Operations in Pandas (7:29)
-
StartMerge & concat operations in pandas (8:03)
-
StartHandling Missing Values in Pandas (11:20)
-
StartData manipulation using group by and crosstab (11:05)
-
StartWorking with date and time (4:18)
-
StartOperations and visualization of dataframe (9:49)
-
StartPython NumPy introduction (3:49)
-
StartInstall and setup NumPy (6:36)
-
StartDifferent ways to create arrays in NumPy (10:26)
-
StartNumPy data types and attributes (10:00)
-
StartWorking with NumPy arrays (5:42)
-
StartString arrays in NumPy (16:43)
-
StartBasic slicing Nd arrays (5:12)
-
StartCopy, Arange and random in NumPy (14:15)
-
StartNumpy arithmetic operations (10:52)
-
StartLogical and comparison operators in NumPy (13:10)
-
StartMathematical Functions in NumPy (10:54)
-
StartWorking with Linear algebra module (11:27)
-
StartNumPy Array Manipulation (15:49)
-
StartNumPy Statistcal Functions (14:39)
-
StartNumPy Counting Functions (8:11)
-
StartWorking of Universal Functions (13:04)
-
StartNumpy Matrix Library (9:30)
-
StartNumPy Histogram Using Matplotlib (8:52)
-
StartScaler Objects in NumPy (5:20)
-
StartBasic and advanced indexing on NumPy Arrays (7:02)
-
StartCharacter Arrays in Python NumPy (6:42)
-
StartSorting Arrays Using NumPy (6:34)
-
StartRecord Arrays in NumPy (8:30)
-
StartMasked Arrays in NumPy Python (6:34)
-
StartWorking with File IO with Python NumPy (12:18)
-
StartIntroduction to Matplotlib (4:17)
-
StartInstallation of Matplotlib (Pip Package) (8:39)
-
StartInstallation of Matplotlib (Conda Package) (7:13)
-
StartHow to start with Matplotlib (19:22)
-
StartAdd title, labels, legend, grids, handling axes (15:00)
-
StartSave Plot in default formats (12:08)
-
StartWorking with backend (15:46)
-
StartWorking with color properties (7:41)
-
StartWorking with line properties (10:14)
-
StartHandling ticks in Matplotlib (8:15)
-
StartMultiple Lines Chart using Matplotlib (4:48)
-
StartBasic Bar Chart (16:59)
-
StartStacked Bar Chart (12:05)
-
StartGrouped Bar Chart (11:18)
-
StartHistogram (26:38)
-
StartScatter Plot (11:15)
-
StartPie Chart in Matplotlib (18:46)
-
StartDonut Chart in Matplotlib (8:00)
-
StartError Bars (13:38)
-
StartPolar Chart (6:37)
-
StartRadial and Angular Grid (5:38)
-
StartQuiver Plot (8:57)
-
StartContour plot (7:50)
-
StartDate plot (9:17)
-
StartText in figure in matplotlib (7:29)
-
StartText function and fonts (9:12)
-
StartLaTeX Formatting (16:45)
-
StartAnnotations and Arrows (12:31)
-
StartSubplots (26:02)
-
StartMultiple Figures (5:59)
-
StartTwin Axes in Matplotlib (10:05)
-
StartLogarithmic Axes in Matplotlib (15:55)
-
StartShare Axis in Matplotlib (6:52)
-
StartAutocorrelation in Matplotlib (5:42)
-
StartBox Plot in Matplotlib (8:44)
-
StartViolin Plot in Python Matplotlib (5:33)
-
StartHeatmap in Python Matplotlib (6:43)
-
StartImage Plotting in Matplotlib (11:01)
-
StartColorbar in Matplotlib (7:30)
-
StartBasic 3D Plots in Matplotlib (12:37)
-
StartAdvance 3D Plots in Matplotlib (11:47)
-
StartIntroduction to Seaborn (4:52)
-
StartInstallation of Seaborn (Using Pip) (10:20)
-
StartInstallation of Seaborn (Using Conda) (8:03)
-
StartRelational Plot (relplot()) (17:37)
-
StartRelational Plot (scatterplot()) (7:53)
-
StartRelational Plot (lineplot()) (8:06)
-
StartCategorical Plot ( Catplot, Barplot, Countplot, Boxplot) (3:44)
-
StartCategorical Plot ( Violinplot, Stripplot, Swarmplot, Factorplot) (20:51)
-
StartDistribution Plot (Displot) (15:40)
-
StartDistribution Plot (Pairplot, Jointplot) (14:16)
-
StartDistribution Plot (Rugplot) (7:30)
-
StartRegression Plot (23:54)
-
StartMatrix Plot (18:28)
-
StartMulti-plot grids (18:28)
-
StartIntroduction to Scikit Learn (3:20)
-
StartScikit learn installation (Windows, MacOS, Linux) (4:48)
-
StartHow to implement Scikit learn workflow (4:09)
-
StartModeling data in Scikit learn (6:27)
-
StartConvert data into numbers (6:16)
-
StartHandle missing value using Simple Imputer (6:19)
-
StartFitting and Predicting the model in scikit learn (6:01)
-
StartEvaluation of Model in Scikit Learn (14:54)
-
StartImprovement of Model in Scikit Learn (5:41)
-
StartIntroduction to PyTorch (4:15)
-
StartInstallation of PyTorch (5:23)
-
StartHow to start with PyTorch (5:38)
-
StartTensorFlow vs PyTorch (4:24)
-
StartOne Dimensional Tensor (7:26)
-
StartVector Operations in PyTorch (6:06)
-
StartTwo Dimensional Tensors (5:31)
-
StartSlicing Three Dimensional Tensor (5:12)
-
StartMatrix Multiplication in PyTorch (10:11)
-
StartGradient with PyTorch (5:09)